Action-Based Testing (ABT) Cheat Sheet

A Logical Approach to Software Testing

Core Principles

1. The Testing Paradox

e The Problem: Unstructured testing leads to complexity. The more you test
without structure, the harder it is to maintain.

e The Solution: Organize tests into modular, reusable actions.

2. The Three Layers of Logic

Separate the “what” from the “how”.

Layer Name Purpose Example
High-Level . ) )
1 ] Business Goals purchase_product("Laptop")
Actions
Mid-L F i
) Id. evel unctional Login() , add_to_cart()
Actions Steps
Low-Level click("submit_btn"), type("user",
3 . Ul Mechanics
Actions "bob")

3. Naming Conventions (The Language of Logic)

* Rule: Verb-Noun
e Why: Creates predictable, readable sentences.

e Examples:
o check_balance

o create_invoice



o X balance_check (Noun-Verb)

o X invoice_new (Noun-Adjective)

4. Test Modules (Architecture)
e Business Objects: Tests for specific entities (e.g., Invoices, Customers ). Focus
on CRUD.

e Business Flows: Tests for processes spanning multiple objects (e.g., order
Fulfillment ).

5. Interface Definitions (The Rosetta Stone)

e Purpose: Decouple logical names from technical IDs.

e Example: "Submit Button" — #btn_submit_v2

Common Anti-Patterns (What NOT to do)

e The “Enter, Enter, Click” Fallacy: Recording every keystroke. Fix: Use higher-
level actions.

e The “Clueless” Test: Wandering without a goal. Fix: Define a clear purpose.

e The “Swiss Army Knife”: Actions doing too much. Fix: Keep actions focused on
one task.

Generated for the “Ask Marilyn About Software Testing” Course



