
Action-Based Testing (ABT) Cheat Sheet

A Logical Approach to Software Testing

Core Principles

1. The Testing Paradox

The Problem: Unstructured testing leads to complexity. The more you test
without structure, the harder it is to maintain.

The Solution: Organize tests into modular, reusable actions.

2. The Three Layers of Logic

Separate the “what” from the “how”.

Layer Name Purpose Example

1
High-Level
Actions

Business Goals purchase_product("Laptop")

2
Mid-Level
Actions

Functional
Steps

login() , add_to_cart()

3
Low-Level
Actions

UI Mechanics
click("submit_btn") , type("user",
"bob")

3. Naming Conventions (The Language of Logic)

Rule: Verb-Noun

Why: Creates predictable, readable sentences.

Examples:
✅ check_balance

✅ create_invoice

❌ balance_check (Noun-Verb)

❌ invoice_new (Noun-Adjective)

4. Test Modules (Architecture)

Business Objects: Tests for specific entities (e.g., Invoices , Customers). Focus
on CRUD.

Business Flows: Tests for processes spanning multiple objects (e.g., Order
Fulfillment).

5. Interface Definitions (The Rosetta Stone)

Purpose: Decouple logical names from technical IDs.

Example: "Submit Button" #btn_submit_v2

Common Anti-Patterns (What NOT to do)

The “Enter, Enter, Click” Fallacy: Recording every keystroke. Fix: Use higher-
level actions.

The “Clueless” Test: Wandering without a goal. Fix: Define a clear purpose.

The “Swiss Army Knife”: Actions doing too much. Fix: Keep actions focused on
one task.

Generated for the “Ask Marilyn About Software Testing” Course

→

